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Abstract

This paper investigates the sensitivity of the post-buckling behavior of shear deformable functionally graded plates
to initial geometrical imperfections in general modes. A generic imperfection function that takes the form of the product
of trigonometric and hyperbolic functions is used to model various possible initial geometrical imperfections such as
sine type, local type, and global type imperfections. The formulations are based on Reddy�s higher-order shear defor-
mation plate theory and von Karman-type geometric nonlinearity. A semi-analytical method that makes use of the one-
dimensional differential quadrature method, the Galerkin technique, and an iteration process is used to obtain the
post-buckling equilibrium paths of plates with various boundary conditions that are subjected to edge compressive
loading together with a uniform temperature change. Special attention is given to the effects of imperfection parameters,
which include half-wave number, amplitude, and location, on the post-buckling response of plates. Numerical results
presented in graphical form for zirconia/aluminum (ZrO2/Al) graded plates reveal that the post-buckling behavior is
very sensitive to the L2-mode local type imperfection. The influences of the volume fraction index, edge compression,
temperature change, boundary condition, side-to-thickness ratio and plate aspect ratio are also discussed.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Composite plates are widely used in aerospace, automotive, marine and civil structures. The accurate
prediction of the post-buckling response of these plates is of utmost importance in engineering design,
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because they are often subjected to in-plane loads, such as edge compression, that may result in nonlinear
deformation at high load levels. It is well accepted that these structures possess unavoidable initial geomet-
rical imperfections that may be globally or locally distributed and may substantially affect the post-buckling
behavior of plates. Quite a few post-buckling analyses of imperfect composite plates have been conducted,
notably those by Yamaki (1959), Hui (1986), Librescu and Souza (1993), Dawe et al. (1995), Librescu et al.
(1995), Shen and Williams (1997), Shen (1998, 1999, 2000, 2001), Yang and Zhang (2000), Featherston
(2001), Yang et al. (2001), Zou and Qiao (2002), Zou and Lam (2003) and Girish and Ramachandra
(2005). However, most of these studies are based on the simplified assumption that the initial geometrical
imperfection has a similar form to the deformed shape of the plate, and the investigations dealing with gen-
eral geometrical imperfections are limited in number. This is partly due to the lack of sufficient information
about the exact size and shape of the actual imperfections to be discussed. Kapania and Yang (1987) treated
general imperfections with polynomials as simulation functions and analyzed the compressive post-buck-
ling of isotropic rectangular plates. This approach was used by Liu and Lam (2001), who presented finite
strip solutions for imperfect composite laminated plates based on the classical plate theory (CPT). Using a
model that bases the form of the imperfection on the first bifurcational eigenmode or a superposition of
several bifurcational eigenmodes, Featherston (2001) gave a finite element analysis of the imperfection sen-
sitivity of the post-buckling behavior of flat plates under a combined action of edge compression and shear.
The effects of imperfection shape and amplitude were discussed in detail through comprehensive numerical
examples.

In the past few years, the use of functionally graded materials (FGMs) has gained intensive attention in
many engineering applications (Ichikawa, 2000). A typical FGM is an inhomogeneous composite that is
usually made from a mixture of ceramic and metal with both the compositional profile and material prop-
erties varying smoothly with respect to the spatial coordinates. Although a number of metallurgical tech-
niques have been developed for the fabrication of bulk FGMs, the complexity of the manufacturing process
means that geometrical imperfections, such as initial curvatures, are inevitable.

Many buckling and post-buckling analyses of perfect, purely FGM or FGM laminated plates have been
reported. Among those, studies concerning the linear stability of FGM plates including compressive buck-
ling, thermal buckling and buckling of initially stressed plates have been conducted by, for example,
Feldman and Aboudi (1997), Javaheri and Eslami (2002), Morimoto et al. (2003), Liew et al. (2003,
2004), Chen and Liew (2004), Na and Kim (2004) and Najafizadeh and Heydari (2004). Most recently,
Yang et al. (2005) extended their deterministic work on FGMs to the buckling of FGM plates with ran-
domness in material properties and presented second-order statistics for the critical buckling load of zirco-
nia/aluminum FGM rectangular plates. The post-buckling of FGM plates under compressive loads with or
without lateral pressure was examined by Yang and Shen (2003) and Ma and Wang (2003a). Ma and Wang
(2003b), Woo et al. (2003) and Liew et al. (2004) dealt with the post-buckling characteristics of FGM plates
under combined thermo-mechanical loading. Liew et al. (2003) also studied the post-buckling behavior of
FGM plates integrated with surface-mounted piezoelectric actuators and subjected to in-plane forces, a uni-
form temperature change, and a constant applied actuator voltage. The linear and nonlinear instability of
FGM plates under various thermo-electro-mechanical loading conditions were addressed as subset prob-
lems. All of the aforementioned works dealt with perfect plate structures only, and the effect of geometrical
imperfections has not been accounted for. The only two exceptions are the papers by Yang and Shen (2003)
and Liew et al. (2004), in which the assumption that the imperfection has a form that is similar to the
deflected shape of the plate was adopted. As far as the authors are aware, no previous work has been under-
taken on the post-buckling behavior of FGM plates with general mode imperfections.

This paper investigates the nonlinear behavior of imperfect shear deformable functionally graded rect-
angular plates in the post-buckling phase. Attention is focused on the effects of different imperfection
parameters, which include the imperfection half-wave number, amplitude, and location, on the post-buck-
ling characteristics of plates under a combined action of edge compression and a uniform temperature
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change. Instead of assuming the imperfection mode to be the same as the deformed shape, a variety of sine
type, local type, and global type imperfections are considered by employing a generic imperfection function
that was developed by the present authors (Kitipornchai et al., 2004) from the one-dimensional imperfec-
tion model for struts (Wadee, 2000). The formulation is based on Reddy�s higher-order shear deformation
plate theory (HSDPT) (Reddy, 1984). A semi-analytical approach and an iteration procedure are used to
determine the post-buckling equilibrium path for graded plates. Numerical results are presented for ZrO2/
Al graded plates in graphical form. A detailed discussion concerning the influence of the geometrical imper-
fection mode as well as other system parameters on the post-buckling response is presented.
2. Theoretical formulations

Consider an imperfect rectangular plate that is made of ceramic/metal functionally graded materials of
length a, width b and thickness h and defined in a Cartesian coordinate system (x, y, z) as shown in Fig. 1,
where (x, y) are the coordinates of a point in the mid-plane of the plate and z is a coordinate perpendicular
to the mid-plane and points upwards. It is assumed that the material composition of the plate varies
smoothly along the thickness direction only in terms of volume fractions according to a power law
distribution
V cðzÞ ¼
2zþ h

2h

� �n

; V mðzÞ ¼ 1� 2zþ h
2h

� �n

ð1Þ
where V(z) represents the volume fraction of the material phase involved, n is a non-negative volume frac-
tion index, and the subscripts ‘‘c’’ and ‘‘m’’ stand for ceramic and metal. It is evident from Eq. (1) that the
upper surface of the plate (z = h/2) is purely ceramic, and the lower surface (z = �h/2) is purely metallic.
The local effective material properties Peff, such as Young�s modulus E and coefficient of linear thermal
expansion a, at a given point can be estimated through
P eff ¼ P mV m þ P cV c ð2Þ

and Poisson�s ratio m is assumed to be a constant for simplicity.

Suppose that the plate is initially stress free at temperature T0 and is then subjected to a uniform tem-
perature change DT and uniform edge compressive loads px along the x-axis and py along the y-axis. In
accordance with Reddy�s higher-order shear deformation plate theory (Reddy, 1984), the displacement field
of an arbitrary point within the plate domain is assumed to be
y

x

z

o

a

b

h

Fig. 1. An FGM rectangular plate and its coordinate system.
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U ¼ Uðx; yÞ þ zWxðx; yÞ � c1z3 Wxðx; yÞ þ
oW
ox

� �
ð3aÞ

V ¼ V ðx; yÞ þ zWyðx; yÞ � c1z3 Wyðx; yÞ þ
oW
oy

� �
ð3bÞ

W ¼ W ðx; yÞ þ W �ðx; yÞ ð3cÞ
where c1 = 4/3h2, ðU ; V ;W Þ are the displacements of an arbitrary point within the plate, (U, V, W) are the
additional mid-plane displacement components that are caused by thermo-mechanical loading, Wx and Wy

are the slope rotations in the x–z and y–z planes, and W* is the initial geometrical imperfection.
In this study, a generic model developed from the one-dimensional imperfection function for struts

(Wadee, 2000) is used to simulate various possible imperfection modes that may be either highly localized
or globally distributed. The model takes the form of the products of trigonometric and hyperbolic functions
as
W � ¼ gh sech d1 n� w1ð Þ½ � cos l1p n� w1ð Þ½ � sech d2 f� w2ð Þ½ � cos l2p f� w2ð Þ½ � ð4Þ
where n = x/a, f = y/b, g is the dimensionless maximum amplitude of the initially deflected geometry, d1

and d2 are the constants that define the degree of localization of the imperfection that is symmetric about
n = w1 and f = w2, and l1 and l2 are the half-wave numbers of the imperfection in the x-axis and y-axis,
respectively. This model was first proposed by the authors (Kitipornchai et al., 2004), and is capable of
modeling a wide range of initial imperfection modes, which include sine type imperfections when
d1 = d2 = 0, l1 = l2 = 1, w1 = w2 = 0.5; local type imperfections when d1 5 0, d2 5 0; and global type
imperfections when d1 = d2 = 0, l1 5 1 or l2 5 1.

The equations of equilibrium of an imperfect FGM plate, in the absence of body forces, are
oNx

ox
þ oN xy

oy
¼ 0 ð5Þ

oNxy

ox
þ oNy

oy
¼ 0 ð6Þ

oQx
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� 3c1
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¼ 0 ð7Þ
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The stress resultants N ¼ ½Nx;N y ;Nxy �0, Q ¼ ½Qy ;Qx�
0, R ¼ ½Ry ;Rx�0, moment resultants M ¼ ½Mx;My ;Mxy �0

and P ¼ ½P x; P y ; P xy �0, where ‘‘ 0’’ indicates transposition of a matrix, are defined by
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among which the thermal stress and moment resultants are
N T
x MT

x P T
x

N T
y MT

y P T
y

NT
xy MT

xy P T
xy

2
64

3
75 ¼ � Z h=2

�h=2

ðQ11 þ Q12Þa
ðQ11 þ Q12Þa

0

8><
>:

9>=
>;ð1; z; z3ÞDT dz ð11Þ
where Qij are the elastic constants for the functionally graded material
Q11 ¼ Q22 ¼
E

1� m2
; Q12 ¼

mE
1� m2

; Q16 ¼ Q26 ¼ 0; Q44 ¼ Q55 ¼ Q66 ¼
E

2ð1þ mÞ ð12Þ
In Eq. (10), the stiffness components Aij, Bij, Dij, Eij, Fij, and Hij are calculated from
ðAij;Bij;Dij;Eij; F ij;H ijÞ ¼
Z h=2

�h=2

Qijð1; z; z2; z3; z4; z6Þdz ði; j ¼ 1; 2; 6Þ ð13aÞ

ð~Aij; ~Dij; ~F ijÞ ¼
Z h=2

�h=2

Qijð1; z2; z4Þdz ði; j ¼ 4; 5Þ ð13bÞ
As the in-plane displacements are small compared with the transverse displacement and the higher-order
strain terms are negligible, the von Karman-type nonlinear strains that are associated with the displacement
field in Eq. (3) are obtained as
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Let U be related to the stress resultants by Nx = U,yy, Ny = U,xx, and Nxy = � U,xy, where a comma de-
notes partial differentiation with respect to the coordinates, and rewrite relationship (10) in partial reverse
form as
eð0Þ
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in which ( ) 0 represents the transpose of the matrix, and the reduced plate stiffness components A�ij, B�ij, D�ij,
E�ij, F �ij, H �ij are determined by
A� ¼ A�1;B� ¼ �A�1B;D� ¼ D� BA�1B;E� ¼ �A�1E;F� ¼ F� EA�1B;H� ¼ H� EA�1E ð16Þ



5252 J. Yang et al. / International Journal of Solids and Structures 43 (2006) 5247–5266
Introducing the dimensionless quantities
b ¼ a=b; D ¼ ðD�11D�22A�11A�22Þ
1=4
; kT ¼ 100acDT ;

ðw;w�Þ ¼ ðW ;W �Þ=D; f ¼ U=ðD�11D�22Þ
1=2
; ðwx;wyÞ ¼ ðWx;WyÞa=D;

c14 ¼ ½D�22=D�11�
1=2
; c24 ¼ ½A�11=A�22�

1=2
; ðkx; kyÞ ¼ ðpxb

2; pya
2Þ=ðD�11D�22Þ

1=2

ð17Þ
substituting Eqs. (14) and (15) into equilibrium Eqs. (5)–(9), and considering the conditions of the defor-
mation compatibility of the plate leads to the nonlinear governing equations for an imperfect graded
plate under edge compression and a uniform temperature change, expressed in terms of w, wx, wy, f, as
follows
L11ðwÞ � L12ðwxÞ � L13ðwyÞ þ c14L14ðf Þ ¼ c14b
2½Lðw; f Þ þ Lðw�; f Þ� ð18Þ

L21ðf Þ þ c24L22ðwxÞ þ c24L23ðwyÞ � c24L24ðwÞ ¼ �c24b
2 1

2
Lðw;wÞ þ Lðw�;wÞ

� �
ð19Þ

L31ðwÞ þ L32ðwxÞ � L33ðwyÞ þ c14L34ðf Þ ¼ 0 ð20Þ
L41ðwÞ � L42ðwxÞ þ L43ðwyÞ þ c14L44ðf Þ ¼ 0 ð21Þ
where the second terms in the right-hand side of Eqs. (18) and (19) reflect the contribution of the initial
geometrical imperfection to the post-buckling response, the nonlinear partial differential operator
L( ) = ( ),nn( ),ff � 2( ),nf( ),nf + ( ),ff( ),nn, Lij (i, j = 1, . . . , 4) are the linear partial differential operators.
The dimensionless quantities not identified in Eq. (17) are given in Appendices A and B.

An FGM plate that is either simply supported (S) or clamped (C) at both edges f = 0, 1, and may be
simply supported (S), clamped (C), or free (F) at edges n = 0, 1 is considered. The associated out-of-plane
boundary conditions at n = 0, 1 are
Simply supportedðSÞ: w ¼ Mx ¼ wy ¼ P x ¼ 0 ð22aÞ

ClampedðCÞ: w ¼ wx ¼ wy ¼
ow
on
¼ 0 ð22bÞ

FreeðFÞ: Q�x ¼ Mx ¼ M�
xy ¼ P x ¼ 0 ð22cÞ
and those at f = 0, 1 require that
Simply supportedðSÞ: w ¼ My ¼ wx ¼ P y ¼ 0 ð23aÞ

ClampedðCÞ: w ¼ wy ¼ wx ¼
ow
of
¼ 0 ð23bÞ
Two different types of in-plane boundary conditions, categorized as ‘‘movable’’ and ‘‘immovable’’ depend-
ing on the in-plane displacement constraints, are considered in the present analysis and can be expressed in
terms of stress function as
f ;nf ¼ 0; f ;ss þ kn ¼ 0 ðfor movable edgesÞ ð24aÞ
or
f ;nf ¼ 0; dn ¼ 0 ðfor immovable edgesÞ ð24bÞ
The subscripts ‘‘n’’ and ‘‘s’’ refer to the normal and tangential directions of the plate edge, Q�x and M�
xy are

the generalized transverse shear force and moment and dn is the end shortening, the dimensionless forms of
which are given by Liew et al. (2003).
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3. Solution method

A semi-analytical approach combined with an iteration process is used in the present analysis to
study the post-buckling of the imperfect FGM plate. To begin with, we convert the partial differential gov-
erning Eqs. (18)–(21) and the associated boundary conditions at n = 0, 1 in Eqs. (22) and (24) into a set of
ordinary differential equations by using the one-dimensional differential quadrature approximation in the
n-axis
v ¼ ½w; f ;wx;wy �; v ¼
XN

j¼1

HjðnÞvj;
ok

onk vjn¼ni
¼
XN

j¼1

CðkÞij vj ð25Þ
where
vj ¼ vðnjÞ ¼ ½wj; fj;wxj;wyj� ð26Þ
is the value of v at the jth nodal line, and N is the total number of nodal lines that are parallel to the f-axis
and distributed along the n-axis according to a cosine spacing pattern with stable convergence
characteristics,
nj ¼
1

2
1� cos

pðj� 1Þ
N � 1

� �
ðj ¼ 1; 2; . . . ; NÞ ð27Þ
and Hj(n) is the Lagrange�s interpolation polynomial
HjðnÞ ¼
RðnÞ

ðn� njÞRð1ÞðnÞ

RðnÞ ¼
YN
i¼1

ðn� niÞ; Rð1ÞðnÞ ¼
YN

i¼1;i6¼j

ðnj � niÞ ð28Þ
The weighting coefficients CðkÞij can be obtained using the following recurrence formula (Bert et al., 1993,
1998; Liew et al., 2001; Yang et al., 2004). For i 5 j
CðkÞij ¼ k Cðk�1Þ
ii Cð1Þij �

Cðk�1Þ
ij

ðni � njÞ

 !
ði; j ¼ 1; 2; . . . N ; k ¼ 2; 3; . . . ; N � 1Þ ð29Þ
and for i = j
CðkÞii ¼ �
XN

j¼1;i6¼j

CðkÞij ði ¼ 1; 2; . . . N ; k ¼ 1; 2; . . . ; N � 1Þ ð30Þ
where the weighting coefficients of the first order derivatives Cð1Þij are
Cð1Þij ¼
Rð1ÞðniÞ

ðni � njÞRð1ÞðnjÞ
ði; j ¼ 1; 2; . . . ;NÞ ð31Þ
Putting Eq. (25) into the partial differential governing Eqs. (18)–(21) and the associated boundary con-
ditions (22) and (24) leads to a set of ordinary differential equations in terms of vj, the solution of which is
expressed as
vj ¼ vj0 þ
XM

m¼1

vjmUjm ð32Þ
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in which
vj0 ¼ 0;� 1

2
f2k�x þ n2k�y

� 	
; 0; 0

� �

Ujm ¼

ajm 0 0 0

0 bjm 0 0

0 0 cjm 0

0 0 0 djm

2
6664

3
7775

ð33Þ
where M is the truncated number of series and ajm, bjm, cjm, djm are the coefficients to be determined. It
should be noted that k�x and k�y are due to the combined action of the applied in-plane forces (kx, ky) and
the thermally induced reactions from immovable constraints, and can be determined from the different
in-plane boundary conditions in Eq. (24). vjm is composed of analytical functions wjm, f̂ jm, wxjm, and wyjm

which satisfy all of the boundary conditions at edges f = 0, 1 in Eqs. (23) and (24) and takes the form of
vjm ¼ ½wjm; f̂ jm;wxjm;wyjm�
¼ ½sinðmpfÞ; sin amf� sinh amf� /mðcos amf� cosh amfÞ; sinðmpfÞ; cosðmpfÞ� ð34aÞ
for plates that are simply supported at both f = 0 and f = 1, or
vjm ¼ ½wjm; f̂ jm;wxjm;wyjm� ¼ ½sin amf� sinh amf� /mðcos amf� cosh amfÞ; sin amf� sinh amf

� /mðcos amf� cosh amfÞ; sinðmpfÞ; sinðmpfÞ� ð34bÞ
for plates clamped at both f = 0 and f =1, where /m ¼ ðsin am � sinh amÞ=ðcos am � cosh amÞ; am ¼
ð2mþ 1Þp=2.

Making use of relationships rx = kx/kp = px/p0 and ry = ky/kp = py/p0 with kp and p0 serving as the
dimensionless and dimensional in-plane load amplitudes, substituting expressions (32)–(34) into the ordin-
ary differential equations and then employing Galerkin�s procedure to minimize the interior residual gives a
nonlinear algebraic system in matrix form as
K0 þ K�0 þ kpKk þ kTKT þ KNLð~vÞ

 �

~v ¼ RT ð35Þ
where K0 is a constant coefficient matrix, K�0 is a matrix showing the effect of initial geometrical imperfec-
tion, Kk and KT are the coefficient matrices associated with the applied in-plane edge forces and tempera-
ture change, KNL is a nonlinear matrix that is dependent on the unknown vector ~v which consists of all of
the unknown constants vjm (j = 1, . . . ,N, m = 1, . . . ,M), RT stands for the thermal load vector that comes
from the stress-related boundary conditions in Eqs. (22)–(24).

It should be mentioned that this formulation is generic, and that Eq. (35) can be used to analyze several
subset problems, such as the elastic buckling, compressive post-buckling, thermal post-buckling and ther-
mo-mechanical post-buckling of perfect and imperfect FGM plates. An iteration process detailed by Liew
et al. (2003) and Yang et al. (in press) is used to obtain the post-buckling equilibrium path of the plate.
4. Numerical results

4.1. Comparison study

Prior to the post-buckling analysis of imperfect FGM plates under edge compressive loading and a uni-
form temperature change, the post-buckling of simply supported, symmetrically cross-ply (0�/90�/0�)
square plates (a/h = 10) that are made of graphite/epoxy (T300/5028) and subjected to equal biaxial
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compression is solved as a sample problem to validate the present formulation and the solution method.
The elastic constants are E11 = 25E22, G12 = G13 = 0.5E22, G23 = 0.2E22, and m12 = 0.28. The post-buckling
equilibrium paths, in the form of nonlinear load–deflection curves, are given in Fig. 2 for both perfect and
imperfect plates together with the HSDPT-based perturbation results of Bhimaraddi (1992) for direct com-
parison. The present results are obtained with the number of nodal lines N = 15 and the truncated number
of series M = 5. Excellent agreement is achieved.

For imperfect plates, the initial geometrical imperfection is assumed to be of the form similar to the de-
formed shape with an amplitude g = 0.05. This imperfection is included in the analysis by introducing the
relationship
Fig. 2
compr
w� ¼ g� � 1

2
w

into Eqs. (18) and (19). The so-called imperfection parameter g* = 1.1 when g = 0.05.

4.2. Parametric studies

In what follows, parametric studies are undertaken to investigate the post-buckling response of FGM
plates with an initial imperfection and subjected to combined mechanical and thermal loads. To this
end, nine imperfection modes are involved in the numerical illustrations with parameters
d1 ¼ d2 ¼ 0; l1 ¼ l2 ¼ 1;w1 ¼ w2 ¼ 0.5
for sine-type imperfection,
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. Comparisons of post-buckling equilibrium paths for a simply supported (0�/90�/0�) square plate under equal biaxial
ession.
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G1-mode: d1 = d2 = 0, l1 = l2 = 3, w1 = w2 = 0.5
G2-mode: d1 = d2 = 0, l1 = l2 = 5, w1 = w2 = 0.5
G3-mode: d1 = d2 = 0, l1 = l2 = 7, w1 = w2 = 0.5

for global-type imperfections, and

L1-mode: d1 = 15, l1 = 2, w1 = 0.25, d2 = 0, l2 = 1, w2 = 0.5
L2-mode: d1 = 15, l1 = 2, w1 = 0.50, d2 = 0, l2 = 1, w2 = 0.5
L3-mode: d1 = 15, l1 = 2, w1 = 0.50, d2 = 0, l2 = 3, w2 = 0.5
L4-mode: d1 = 15, l1 = 2, w1 = 0.50, d2 = 0, l2 = 5, w2 = 0.5
L5-mode: d1 = 15, l1 = 2, w1 = 0.50, d2 = 0, l2 = 7, w2 = 0.5

for local-type imperfections.
Aluminum (Al) and zirconia (ZrO2) are chosen as the metallic and ceramic phases of the plate with

thermo-elastic material properties:
Fig. 3.
materi
Em ¼ 70 GPa; mm ¼ 0.3; am ¼ 2.3� 10�5 1=K; Ec ¼ 151 GPa; mc ¼ 0.3; ac ¼ 1.0� 10�5 1=K
The post-buckling equilibrium paths, in the form of the dimensionless load parameter k0 = p0b2/(4p2D0) in
Figs. 3–8, 10–12 and kT in Fig. 9 plotted against the dimensionless additional central deflection W0/h, are
for clamped FGM square plates with volume fraction index n = 2.0, side-to-thickness ratio a/h = 10.0 and
imperfection amplitude g = 0.1, unless otherwise specified. The plates are compressed by equal biaxial edge
forces (rx = ry = 1.0) in Figs. 3–7, 10–12 or subjected to a uniaxial compression (rx 5 0.0, ry = 0.0) together
with a uniform temperature increase in Figs. 8 and 9. To facilitate the numerical illustration in these figures,
the value of D�11 for an isotropic aluminum plate with a thickness h = 0.01 m is selected to be the reference
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Compressive post-buckling equilibrium paths for perfect and imperfect clamped functionally graded square plates with varying
al compositions.
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stiffness, and is denoted byD0. The solid lines and the dashed lines represent the results for imperfect plates
and perfect plates, respectively, except in Fig. 7.
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Fig. 3 shows the compressive post-buckling equilibrium paths of FGM plates with different material
compositions (n = 0.2, 2.0, 10.0). The sine-mode imperfection is considered in this example. As expected,
the post-buckling load-carrying capacity for both perfect and imperfect graded plates increases as the
volumetric percentage of the high modulus ZrO2 increases at a lower volume fraction index n. No obvious
effect is observed of the variation in n on the imperfection sensitivity of the post-buckling response. The
post-buckling curves of the imperfect plates are slightly lower than their perfect counterparts before
W0/h � 0.9. A sudden decline in the post-buckling curves of the two perfect plates (n = 0.2, 10.0) indicates
the possible occurrence of the so-called ‘‘secondary instability’’. This phenomenon is also observed in all of
the other examples, except for Figs. 5 and 9.

Fig. 4 examines the compressive post-buckling behavior of graded plates with global-type geometric
imperfections (G1-, G2- and G3-modes) that are symmetric about the plate center. The half-wave numbers
for the G1-, G2- and G3-modes are 3, 5, and 7, respectively. The effect of the half-wave number of globally
distributed imperfections on the post-buckling response of graded plates is seen to be not very important.
The post-buckling equilibrium path of the imperfect plate with G3-mode imperfection is initially higher
than the curve of the perfect plate when W0/h = 0.20 � 0.70, but as the load increases it becomes lower
and suddenly drops at W0/h = 0.9. The plate with G2-mode imperfection exhibits the typical secondary
instability starting from W0/h = 0.78.

The effect of the half-wave number of the imperfection mode on the compressive post-buckling behavior
of a graded plate is further studied in Fig. 5 through a comparison of its response sensitivity to local imper-
fections that are also symmetric with respect to the plate center. For this purpose, L2, L3, L4 and L5 are
chosen to be the local imperfection modes in this example and the half-wave numbers are 2 in the x-direc-
tion and 1, 3, 5, and 7 in the y-direction. Overall, the post-buckling strength becomes higher as the imper-
fection half-wave number increases, and the curves of imperfect plates with L4-mode and L5-mode
imperfections are close to the curve of the perfect plate. This implies that the post-buckling equilibrium
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path tends to be much less affected if the local initial geometrical imperfection has a higher half-wave
number.

The post-buckling sensitivity of graded plates to unsymmetrically distributed local imperfections is also
investigated. This is undertaken by considering an L1-mode imperfection, the geometric center of which is
deviated from the plate center along n-axis with varying values of w1 used in Eq. (4). The compressive post-
buckling equilibrium paths for five cases of w1 (w1 = 0.1, 0.2, 0.3, 0.4, 0.5) are computed and compared in
Fig. 6. Note that the unsymmetrical L1-mode virtually becomes a symmetric L2-mode when w1 = 0.5. The
results show that the post-buckling load-carrying capacity is most weakened by the symmetric imperfection
mode that is centered at the plate center. The post-buckling responses of the perfect plate and the imperfect
plates with w1 = 0.1, 0.2, 0.4 are almost identical, especially before W0/h approaches somewhere around
0.9.

We next look into the effect of imperfection amplitude on the post-buckling equilibrium paths of graded
plates. Fig. 7 displays the compressive post-buckling curves of imperfect graded plates with imperfection
amplitudes g = 0.05 and g = 0.15, which are denoted by the solid lines and the dashed lines, respectively.
The imperfections considered in this example and hereafter in Figs. 8–12 are sine-mode, G2-mode and L2-
mode. It can be seen that an increase in the imperfection amplitude lowers the post-buckling equilibrium
path for plates with sine type and L2-mode imperfections. This reduction is quite significant for the plate
with L2-mode local imperfection. The plate with G2-mode imperfection, however, possesses almost the
same post-buckling strength in these two cases before W0/h = 0.8. A secondary instability then takes place
beyond this point for the plate with smaller imperfection amplitude (g = 0.05) and its post-buckling
strength becomes much less than that of the plate with greater imperfection amplitude (g = 0.15).

Fig. 8 shows the thermo-mechanical post-buckling equilibrium paths of perfect and imperfect graded
plates subjected to uniaxial compression in the x-axis (rx = 1.0, ry = 0.0) and a constant temperature incre-
ment. The plate is allowed to move along the x-axis and restrained against any in-plane displacements in the
y-axis. Line groups 1 and 2 represent the results for the cases of DT = 300 K and DT = 600 K, respectively.
The compressive post-buckling behavior of graded plates under a constant temperature change is much
more complicated compared with the results obtained in the previous examples where no thermal effect
is included. The temperature increment is seen to reduce the post-buckling strength of the imperfect plates,
as would be expected. This is because the existence of the thermally induced compressive in-plane stress
state results in deterioration in the plate stiffness. It is interesting to note that nearly all of the plates expe-
rience secondary instability and for perfect plates in particular, the post-buckling curve at DT = 600 K even
surpasses the curve at DT = 300 K in the larger deflection range (W0/h P 0.8). The temperature change,
however, seems to have very little influence on the sensitivity of post-buckling response to all of the three
imperfection modes considered.

Fig. 9 further studies the thermo-mechanical post-buckling behavior of the same plates discussed in
Fig. 8 but subjected to another loading case. In this example, the thermo-mechanical load consists of a con-
stant uniaxial compression in the x-axis and an increasing uniform temperature change. Among the two in-
plane load cases considered, rx = ry = 0 indicates that no edge compression is present and the curves in
group ‘‘a’’ for this case are virtually the thermal post-buckling equilibrium paths, while rx = 0.5, ry = 0 re-
fers to a case in which the plate is loaded by a combination of a uniform temperature rise and a constant
uniaxial compression kx that is half of the compressive buckling load of the perfect plate compressed by kx

only. The presence of edge compression considerably lowers the thermo-mechanical post-buckling curves
and makes the plate more sensitive to the initial geometrical imperfection, especially to the L2-mode local
imperfection. Unlike the compressive post-buckling results in other examples, many of the nonlinear deflec-
tion-temperature curves stop at relatively small deflections, e.g., the post-buckling curves of the thermally
loaded perfect plate and imperfect plates containing sine type and G2-mode imperfections, which are much
higher than the curves of the thermo-mechanically loaded plates, stop at W0/h = 0.3 and W0/h = 0.4,
respectively.
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The effects of the boundary condition and the plate geometry are investigated in Figs. 10–12, where the
plate is loaded by equal biaxial compression only. No thermal load is included. Fig. 10 shows the post-buck-
ling equilibrium paths of imperfect graded plates with different boundary conditions. ‘‘SSSS’’ refers to a
plate simply supported at all edges and ‘‘CSCS’’ refers to a plate simply supported at x = 0, 1 and clamped
at y = 0, 1. The post-buckling curves in all cases have a similar pattern, except that the SSSS plates with G2-
mode imperfections exhibits a typical secondary instability in the vicinity of W0/h = 0.6. A comparison of
the results in this figure and those for clamped plates shows that the discrepancy between the post-buckling
responses of the graded plates with sine-mode, G2-mode and L2-mode imperfections are almost the same,
regardless of the different boundary conditions involved. This may lead to the conclusion that the edge sup-
porting condition which considerably influences the post-buckling load-carry capacity does not substantially
affect the imperfection sensitivity of the post-buckling behavior of imperfect graded plates.

Figs. 11 and 12 depict the post-buckling equilibrium paths of graded plates with varying side-to-thickness
ratios a/h and aspect ratios a/b. Graded plates with a/h = 8, 12 and a/b = 0.75, 1.50 have been analyzed, with
the value of a being kept constant in all cases. Among those considered, the plate with a/h = 8 and that with
a/b = 0.75 have considerably higher post-buckling strength than the other plates. The results also demon-
strate that graded plates tend to be more sensitive to geometrical imperfections as the values of a/h and
a/b decrease. The post-buckling curves of graded plates with different thicknesses have a similar pattern.
But for rectangular graded plates, although the post-buckling curves in three imperfection cases are very
close before W0/h = 0.62–0.64, these curves begin to follow a somewhat different way afterwards.

Figs. 7–12 also show that basically, the post-buckling curves of perfect plates and imperfect plates with
sine-mode and G2-mode imperfections are not only quite close to each other especially when deflection
W0/h is not large, but are also clearly higher than the curves of locally imperfect plates, which confirms that
the post-buckling behavior of graded plates is relatively insensitive to sine-mode and global imperfections
but is much more sensitive to locally distributed, symmetric imperfections.

Note that in Figs. 8, 9, 12, some of the post-buckling equilibrium paths stop at certain values of W0/h,
indicating that these plates will lose load-carrying capacity beyond these points.
5. Conclusions

The imperfection sensitivity of the post-buckling behavior of shear deformable FGM plates under uni-
form edge compression and a uniform temperature change is investigated in this paper by using Reddy�s
higher-order shear deformation plate theory and a semi-analytical approach. The effects of a wide range
of initial geometrical imperfection modes on the post-buckling response are evaluated through parametric
studies. The results show that the post-buckling strength is relatively insensitive to sine-mode and global
imperfections but is highly sensitive to L2-mode local imperfections that are located at the center of the
plate. The effect of a local imperfection becomes much less as its center deviates from the center of the plate.
The introduction of edge compression significantly weakens the thermo-mechanical post-buckling load-
carrying capacity. An increase in the volume fraction index, the side-to-thickness ratio and the plate aspect
ratio also greatly lowers the post-buckling curves, but has an insignificant effect on the imperfection sensi-
tivity of the post-buckling response of the plate.
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Appendix A
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Appendix B

The dimensionless quantities in Appendix A are defined as
ðc110; c112; c114Þ ¼ c1½F �11; ðF �12 þ F �21 þ 4F �66Þ=2; F �22�=D�11;

ðc120; c122Þ ¼ ½ðD�11 � c1F �11Þ; ðD�12 � c1F �12 þ 2D�66 � 2c1F �66Þ�=D�11

ðc131; c133Þ ¼ ½ðD�12 � c1F �21 þ 2D�66 � 2c1F �66Þ; ðD�22 � c1F �22Þ�=D�11;

ðc140; c142; c144Þ ¼ c1½B�21; ðB�11 þ B�22 � 2B�66Þ;B�12�=D;
ðc212; c214Þ ¼ ½ð2A�12 þ A�66Þ=2;A�12�=A�22;

ðc220; c222Þ ¼ ½ðB�21 � c1E�21Þ;B�11 � B�66 � c1ðE�11 � E�66Þ�=D;
ðc231; c233Þ ¼ ½B�22 � B�66 � c1ðE�22 � E�66Þ; ðB�12 � c1E�12Þ�=D;
ðc240; c242; c244Þ ¼ c1½E�21; ðE�11 þ E�22 � 2E�66Þ;E�12�=D;
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ðc310; c312Þ ¼ c1½ðF �11 � c1H �11Þ; ðF �21 þ 2F �66 � c1ðH �12 þ 2H �66ÞÞ�=D;
ðc320; c322; c331Þ ¼ ½ðD�11 � 2c1F �11 þ c2

1H �11Þ; ðD�66 � 2c1F �66 þ c2
1H �66Þ;

D�12 þ D�66 � c1ðF �12 þ F �21 þ 2F �66Þ þ c2
1ðH �12 þ H �66Þ�=D�11;

ðc411; c413Þ ¼ c1½F �12 þ 2F �66 � c1ðH �12 þ 2H �66Þ; F �22 � c1H �22�=D;
ðc430; c432Þ ¼ ½ðD�66 � 2c1F �66 þ c2

1H �66Þ; ðD�22 � 2c1F �22 þ c2
1H �22Þ�=D�11;

ðc31; c41Þ ¼ ½ðA�55 � 6c1D�55 þ 9c2
1F �55Þ; ðA�44 � 6c1D�44 þ 9c2

1F �44Þ�=D�11.
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